skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Ruichang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract Geological carbon dioxide (CO2) sequestration (GCS) in deep saline aquifers is a promising solution to mitigate the impact of anthropogenic CO2emissions on global climate change. CO2dissolved in formation water increases the solution density and can lead to miscible density‐driven downward convection, which significantly accelerates the dissolution trapping of injected CO2. Experimental studies on miscible density‐driven convection have been limited. In the laboratory, we found an empirical linear correlation between reflected green light intensity and solute concentration, which enabledin situmeasurements of solute concentrations in the spatial and temporal domains and consequently the mass flux across the top boundary of the porous medium. Using the novel experimental techniques, we determined the critical Rayleigh‐Darcy number and critical time scales for the onset of density‐driven instability and convective dissolution. This is the first study to determine these critical system parameters using laboratory experiments. 
    more » « less